Orleton and Kimbolton

Progression in Calculation Policy January 2022
"Mathematics is a creative and highly inter-connected discipline that has been developed over centuries, providing the solution to some of history's most intriguing problems. It is essential to everyday life, critical to science, technology and engineering, and necessary for financial literacy and most forms of employment. A high-quality mathematics education therefore provides a foundation for understanding the world, the ability to reason mathematically, an appreciation of the beauty and power of mathematics, and a sense of enjoyment and curiosity about the subject."

This calculation policy is a guide for all staff at Orleton and Kimbolton Primaries and forms part of the mathematics policy.
It is designed to be used alongside any teaching resources that teachers wish to use.
Staff are encouraged to access the NCETM and White Rose Websites for ideas and guidance. In EYFS, Development Matters statements are referred to; to inform planning and progress towards meeting the Early Learning Goals:

All teachers have access to the schemes of work from the White Rose Maths Hub. Where appropriate, staff are encouraged to base their planning around these recommended modules. However, it should be emphasised that all planning should take account of the requirements of the pupils in terms of where they are in their learning and how they can achieve successful outcomes. Teachers are responsible for making these judgements.

The White Rose Maths schemes of work provide sequential programmes of study that are underpinned by promoting fluency in number. They emphasise that all pupils must have a thorough grounding in the four basic rules of number before progressing on to the next level. This complete understanding gives pupils more confidence in dealing with number activities and in turn, leads to mastery of the four operations.

Whilst the calculation policy guidance document is separated into year group phases, these are intended to be used only as a guide and it is the teachers' professional judgement as to when the pupils move on to the next phase.

Progression in Calculation Policy January 2022

	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
A d d i t t i d o n	Saying which number is one more than a given number. Finding the total number of items in two groups by counting all of them. Finding the total by starting at the bigger number and counting on. Introduce the part part whole model.	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on. Regrouping to make 10.	Adding three single digits. Column method - no regrouping.	Column method regrouping. (Up to 3 digits)	Column method regrouping. (Up to 4 digits)	Column method regrouping. (with more than 4 digits) Decimals - with the same amount of decimal places	Column method regrouping. Decimals - with the different amounts of decimal places
S u b t r r a c t t i o n	Taking away using objects or drawing and crossing out. Saying which number is one less than a given number. Subtracting two single digit numbers by counting back. Introduce the part part whole model.	Taking away ones Counting back Find the difference Part part whole model Make 10	Counting back Finding the difference Part whole model Make 10 Column method - no regrouping	Column method regrouping. (Up to 3 digits)	Column method regrouping. (Up to 4 digits)	Column method regrouping. (with more than 4 digits) Decimals - with the same amount of decimal places	Column method regrouping. Decimals - with the different amounts of decimal places
	Problem solving - doubling	Doubling Counting in multiples	Doubling Counting in multiples Repeated addition Arrays - showing commutative multiplication	Counting in multiples Repeated addition Arrays - showing commutative multiplication	Column multiplication (2 and 3 digit multiplied by 1 digit)	Column multiplication (up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication (multi digit numbers multiplied by a 2 digit number) Including multiplying decimals
D i i v i S i o n	Problem solving - halving and sharing.	Sharing objects into groups Division as grouping	Division as grouping Division within arrays	Division within arrays Division with a remainder Short Division (2 digits by 1 digitconcrete and pictorial)	Division within arrays Division with a remainder Short Division (up to 3 digits by 1 digit- concrete and pictorial)	Short Division (up to 4 digits by a 1 digit number interpret remainders appropriately for the context)	Short division Long division (up to 4 digits by a 2 digit number interpret remainders as whole numbers, fractions as required)

Orleton and Kimbolton

Progression in Calculation Policy January 2022

Mathematical Terminology

Layout - One digit per square, decimal places number be on the line and not in a square. A comma should be used to denote thousands and millions i.e. 1,000 and 1,000,000

Addition, subtraction (take away up to and including year 3), multiplication, times, division
Ones - ones not units i.e. this is the ones column, we have 5 ones.
Place value - when talking about any operation using a formal methods we should ensure that children understand and refer to where necessary the true value each digit represents i.e.

H T O
123
236
As an addition sum we would say 6 add 3 is 9,30 add 20 is 50 etc. Once children understand the value of each digit this does not need to continue.

When using formal methods children should always be taught to put the value each column represents above it i.e.
Th H T O

Orleton and Kimbolton

Progression in Calculation Policy January 2022

Digits -> Numerals -> Numbers

Just like letters make up words, and words stand for an idea of the thing.

Number Instead of Numeral

But often people (including myself) say "Number" when they really should say
 "Numeral" ... it doesn't really matter if you do that, because other people

 understand you.We can write numerals using digits or words i.e. 23 or twenty-three
Subitize - The ability to recognise numbers up to 20 from visual images such as cubes, 10 's frames can be used Fact families - see below, also applies to multiplication and division

Orleton and Kimbolton

Progression in Calculation Policy January 2022

Addition and Subtraction Fact Family

We call these -100 s 10 s and 1 s not Dienes.
Number sentence - i.e. $2+3=5$

Times tables and when they are taught in school

	Year R	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Counting in	Counting in 2's	Counting in	Counting in	X tables for	X times up to	Reinforce and	Reinforce and
and x table for	Number bonds	$2,5,10 \mathrm{~s}$	$2,5,10,3 \mathrm{~s}$	$2,5,10,3,4,8$	12×12	recap	recap
	to 5 and 10		Xtable for				

Addition Vocabulary

Year R	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
More One more More than Add Addition Equals Total Make Plus Part Whole Altogether And Number bonds	Number bonds Represents Sign Subitize Counting on Commutative Systematic Greater than	Column addition Exchange Estimate Inverse	Regroup Increase Operation	Commutative Sum Integer	Carry the digit Equal to Is the same as	Annexing Vertical Algorithm

Addition Progression

| Objectives and
 strategies
 Approximate
 year group | Concrete | Pictorial | Abstract |
| :--- | :--- | :--- | :--- | :--- |
| Saying which
 number is
 more than a
 given
 number
 R | Use cubes | | |

Orleton and Kimbolton
Progression in Calculation Policy January 2022

Finding a total number of items in two groups by counting all R	Use Numicon 99 Use objects	Use pictures to add 2 groups	3 and 4 makes \square $3+4=$ \square
Finding the total number of items in two groups by counting on R	\square Use Numicon to count on \square Use blocks Rekenrek	Counting on using pictures	$5+3=$ \square Move into abstract (holding larger numbers in head)

Orleton and Kimbolton
Progression in Calculation Policy January 2022
Progresion in Calculation Policy Janua 2022
$4+3=7$

Use cubes to add two numbers together as a group or in a bar.
R/1

$\begin{array}{l}\text { Starting at } \\ \text { the bigger }\end{array}$

1

Bar model - limited use

Start at the larger number on the number line and count on in ones or in one jump to find the answer.

Starting with blank number tracks, moving to number lines and then blank number lines.
$10=6+4$

Use pictures to add two numbers together as a group or in a bar.

$5+12=17$

Place the larger number in

Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.
 your head and count on the smaller number to find your answer.

Progression in Calculation Policy January 2022
Regrouping
to make 10.
Adding three
single digits
2

Orleton and Kimbolton

Progression in Calculation Policy January 2022

Column method without regrouping 2	Add together the ones first then add the tens. Use the 10's and 1's equipment first before moving onto place value counters. $24+15=$ $44+15=$	After practically using the 10's and 1's equipment and place value counters, children can draw the counters using a place value frame to help them to solve additions. $32+23=$	Add the ones first, then the tens, then the hundreds. $\begin{array}{r} 223 \\ +114 \\ \hline 337 \end{array}$
Column method with regrouping 3 - up to 3 digits 4 - up to 4 digits 5 - more than 4 digits, decimals with the same amount of	This process is to be done with the base 10 equipment to help children clearly see that 10 ones equal 1 ten and 10 tens equal 100. Add, regroup 10 ones for a ten and 10 tens for a hundred. Progressing to place value counters. Make both numbers on a place value grid.	Children draw a pictorial representation of the place value frame and counters to further support their learning and understanding re-grouping the ten underneath the equals line.	Start by partitioning the numbers before moving on to formal written methods clearly show the re-grouping. $\begin{aligned} & 25+48= \\ & 20+5 \\ & \frac{40+8}{60+13}=73 \end{aligned}$ Add the ones first, then the tens, then the hundreds. HTO

Orleton and Kimbolton

Progression in Calculation Policy January 2022
536
$+85$
6 - Decimals with different amounts of decimal
places

\bigcirc	$\stackrel{\bullet}{0}$	$\stackrel{\bullet}{\bullet 0 \cdot 0}$	146 +527	- -	88	\because		
$\bigcirc \bigcirc \bigcirc \bigcirc$		-800		:\%	$\because 0$	-		
Add up the ones and re-group 10 ones for one 10 .				7	1	5		
				\bullet		-		

621
11

As the children move on, introduce decimals with the same number of decimal places and different places. Money can be used here.

$$
\begin{array}{r}
72.8 \\
+\quad 54.6 \\
\hline 127.4 \\
\hline
\end{array}
$$

11
Add up the rest of the columns, regrouping the 10 counters from one column for the next place value column until every column has been added.

As children move on to decimals, money and decimals place value counters can be used to support learning.
£23.59

+ £ 7.55
£31.14
111

81,059
3.668

15,301
$+20,551$
120,579

Progression in Calculation Policy January 2022

Subtraction Vocabulary

Year R	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Fewer Subtraction Take away Less Count Back First, Then, Now How many left Minus	Difference Find the difference Difference between Smaller Less than Subitise Part Whole Partition Related facts	Exchange don't use knock next door Count on to find the difference	No take away after year 3			Decomposition

Orleton and Kimbolton

Progression in Calculation Policy January 2022

Subtraction Progression

Objectives and strategies Approximate year group		Concrete	Pictorial	
Subtraction as take away R				Abstract

Orleton and Kimbolton

Progression in Calculation Policy January 2022

Saying which number is one less than a given number R	Physically removing one item "Yum"	Crossing out one	4 take away 1 makes 1 less than 4 is \square 1 fewer than 4 is \square
Subtracting two single digit numbers by counting back R	Physical number line	Counting back on number line	$9-4=$ \square Put larger number in head and count back
Taking away ones 1	Use physical objects, counters, cubes etc to show how objects can be taken away. $6-4=2$	Cross out drawn objects to show what has been taken away. $15-3=12$	$\begin{aligned} & 7-4=3 \\ & 6=8-2 \\ & 18-3=15 \end{aligned}$

Orleton and Kimbolton

Progression in Calculation Policy January 2022

Use of number lines - see above
Count back in ones using a number line.

This can progress all the way to counting back using two 2 digit numbers.

Count on using a number line to find the difference.

Put 13 in your head, count back 4. What number are you at?

Hannah has 23 sweets, her sister has 15 sweets. Find the difference between the number of sweets.

Ben has 12 marbles and his brother has 5. How many more

Orleton and Kimbolton

Progression in Calculation Policy January 2022

	Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	Comparison Bar Models Draw bars to find the difference between 2 numbers. Find the difference in age between them.	marbles does Ben have than his brother?
Part Whole Model $1 / 2$	Link to addition - use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to show the part whole model.	Move to using numbers within the part whole model.
Make 10 $1 / 2$	$14-5$ Make 14 on the ten frame. We will partition the 5 . Take away the 4 first to make 10 and then take away 1 more so you have taken away 5 .	Use a number line. 13-7 = Start at 13. Partition the 7 into a 3 and a 4 so can take away 3 to reach 10 . Then take away the remaining 4 so you have taken away 7 altogether.	$16-8=$ Partition the 8 . How many do we take off to reach the next 10 ?

Orleton and Kimbolton

Progression in Calculation Policy January 2022

Orleton and Kimbolton

Progression in Calculation Policy January 2022

Column method with regrouping 3-3 digits 4-4 digits 5 - plus 4 digits and decimals with the same amount of decimal places 6 - Decimals with different amounts of decimal places	Use Base 10 to start with before moving onto place value counters. Start with one regrouping before moving onto subtractions with 2 regroupings then onto 3. Make the larger number with the place value counters Start with the ones, can I take 8 from 4? I need to regroup one of my tens for 10 ones. Now I can subtract my ones. Now look at the tens, can I take away 8 tens? I need to regroup 1 hundred for 10 tens.	Children draw the Base 10 equipment or the place value counters to	Children can start their formal written method by partioning the number into clear plave value columns. The children then progress to formal written methods. $728-582$ H T O 67128 582 146 \qquad This will lead to subtracting any number

Orleton and Kimbolton
Progression in Calculation Policy January 2022

Now I can take away 8 tens and complete my subtraction.

Show how the concrete method links to the written method alongside your workings. Cross out the numbers when regrouping and show where and how we write the new amount.

including decimals
Use zeros for place holders, please note - decimal places should not be placed in squares i.e. 23.4 not 23.4

*" 816,699
$\begin{array}{r}89,949 \\ \hline 60,750\end{array}$

Xle $5 \cdot 3 / 4119 \mathrm{~kg}$
$36 \cdot 080 \mathrm{~kg}$
$\begin{array}{r}36 \cdot 080 \mathrm{~kg} \\ \hline 69 \cdot 339 \mathrm{~kg}\end{array}$

Multiplication Vocabulary

Year R	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Double Equal groups Same	Repeated Addition Groups of Array Fact families Related facts Subitize	Times Multiple Lots of Multiplied by Inverse		Product	Factor Common multiples Prime numbers Square numbers Composite numbers Cubed numbers Scaling	BODMAS Powers

Multiplication Progression

\begin{tabular}{|c|c|c|c|}
\hline Objectives and strategies Approximate year group \& Concrete \& Pictorial \& Abstract \\
\hline Problem solving doubling R \& I have 3 pears. Can you double the number of pears? \& Can you double the numicon shape? \& \begin{tabular}{l}
What is double 3? \\
Double 3 is \(\square\)
\end{tabular} \\
\hline Doubling \(1 / 2\) \& Use practical activities to show how to double a number. \& \begin{tabular}{l}
Draw pictures to show how to double a number. \\
Double 4 is 8

\square
\square
\square
\square
\square
\end{tabular} \& Partition a number and then double each part before recombining it back together.

\hline
\end{tabular}

Orleton and Kimbolton

Progression in Calculation Policy January 2022

	Model doubling using the 10's and 1's equipment: Double $26=$		
Counting in multiples $1 / 2$	Count in multples supportes by concrete objects in equal groups	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$

Orleton and Kimbolton

Progression in Calculation Policy January 2022

Repeated addition 2/3	Use different objects to add equal groups	Use pictorial including number lines to solve problem There are 3 sweets in one bag. How many sweets are in 5 bags altogether? $5+5+5=15$	Write addition asentences to describe objects and pictures.
Counting in multiples from 0 (repeated addition) 2/3	Count the groups as children skip count. Use bar models.	Number lines, counting sticks and bar models should be used to show representation of counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers.

Progression in Calculation Policy January 2022

	$5+5+5+5+5+5+5+5=40$111 111 111 111 $?$	smy sm 3 3 3 3	$\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \\ & 4 \times 3= \end{aligned}$
Arrays showing commutative multiplication 2/3	Create arrays using counters/cubes to show multiplication sentences And find answers to 2 lots of 5, 3 lots of 2 etc.	Draw arrays in different rotations to find commutative multiplication sentences ```0000 4\times2=8 2\times4-8 00-2\times4=8``` Link arrays to areas of rectangles.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

	Pupiuls should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multplication does not affect the answer.		
Using the inverse. This should be taught alongside division so pupils learn how they work alongside each other.			Show all 8 related fact family sentences. $\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$

Orleton and Kimbolton

Progression in Calculation Policy January 2022

Partitioning 4	Use 10's and 1's to move towards a more compact method. $4 \times 13=$	Children can represent their work with place value couters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking: Draw part whole models Bar models are used to explore missing numbers	Children use partitioning and use the multiplication facts that they know to help them by making numbers 10 x smaller to multiply then make them 10 x bigger in the answer. $\begin{aligned} & 33 \times 8= \\ & 30 \times 8=240 \\ & 3 \times 8=24 \\ & 240+24=264 \end{aligned}$

Orleton and Kimbolton

Progression in Calculation Policy January 2022

		$4 \times \square=20$ 20	
Column multiplication 4 - 2-3digit x 1 digit 5-4 digit x 12 6-Any $\times 2$ and decimals up to 2 decimal places by a single digit	Children continue to be supported 10's and 1 'sequipment. This is inititially done where ther is no regrouping ie $321 \times 2=$ Prgressing to re-grouping always mulyiply the ones column first. The corresponding long multiplication is modelled alongside.	Bar models and number lines can support learners when solving problems with multiplication alongside the formal written methods. \square 25501] \longrightarrow	Start with long multiplication, reminding children about lining up their numbers clearly in columns. Initially, Children to write out what they are solving next to their answer to help them understand the process. $\begin{aligned} & 32 \\ & \times \quad 24 \\ & \hline 8(4 \times 2) \\ & 120(4 \times 30) \\ & 40(20 \times 2) \\ & \cline { 1 - 1 } 760(20 \times 30) \end{aligned}$

Orleton and Kimbolton
Progression in Calculation Policy January 2022

Orleton and Kimbolton
Progression in Calculation Policy January 2022

			$\begin{array}{r} 1234 \\ \times \quad 16 \\ \hline 7404{ }^{(1234 \times 6)} \\ 12340 \\ \hline 19,744 \end{array}$ Multiplying decimals up to 2 decimal places by a single digit: Remind children that the single digit belongs to the ones column. Line up the decimal points in the question and the answer. 3.19 X 8 We have chosen to place the 8 on the far right of the number to be multiplied by, we will explain to children this is not the correct place in terms of place value but prevents children from putting values in the wrong column

Progression in Calculation Policy January 2022

Division Vocabulary

Year R	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Share	Groups	Left over			Divisibility	
Half	Equal groups	Remainder	Divisible by		rules	Divisor
Equal	Unequal	Divide by	Can be			Dividend Quotient Same Lroups Livision Divide Subitise
						Ratio Scaling

Orleton and Kimbolton

Progression in Calculation Policy January 2022

Division Progression

Objectives and strategies	Concrete	Pictorial	Abstract
Problem solving halving R	I have 4 pencils. I give half of these pencils to a friend. Can you cut the cake/pizza in half?	Cross off half of the holes on the Numicon. How many holes are left?	Half of 8 is \square What is half of 8 ?
Problem solving sharing R	Share these 6 pears between 3 children in the class.	Show how these marbles can be shared between two children	What is 8 shared between 2 ? Ben has eight marbles and he wants to share them equally with his friend, Sam. How many marbles to they get each?

Orleton and Kimbolton

Progression in Calculation Policy January 2022

Orleton and Kimbolton

Progression in Calculation Policy January 2022

Division as grouping $1 / 2$	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. Use the 10's and 1's equipment or place value counters: 24 divided into groups of $6=4$ $96 \div 3=32$	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. \square $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?
Division with arrays. $2 / 3 / 4 / 5$	Link division to multiplication by creating an array and thinking about the number sentences that can be created.	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplictaion and division sentences by creating four linking family number sentences.

Orleton and Kimbolton

Progression in Calculation Policy January 2022

	$\begin{array}{rr} \operatorname{Eg} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$					$\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$

Orleton and Kimbolton

Progression in Calculation Policy January 2022

Orleton and Kimbolton
Progression in Calculation Policy January 2022

	We look how much is in 1 group so the answer in 14.		$\frac{0663}{8 \longdiv { 5 ^ { 5 } 3 ^ { 5 } 0 ^ { 2 } 9 }} \cdot 5$
Long Division 6	$2544 \div 12$ How many groups of 12 thousands do we have? None Regroup 2 thousands for 20 hundreds. $1 2 \longdiv { 2 5 4 4 }$ How many groups of 12 are in 25 hundreds? 2 groups. Circle them. We have grouped 24 hundreds so can take them off and we are left with one. $\begin{gathered} 1 2 \longdiv { 2 5 } \begin{array} { c } { \frac { 2 5 4 4 } { 2 4 } } \\ { \frac { 2 } { 1 } } \end{array} \end{gathered}$ Regroup the 1 hundred for 10 tens so now we have 14 tens. How many groups of 12 are there in 14? 1 remainder 2.	Instead of using physical counters, students can draw the counters and circle the groups on a whiteboard or in their books. Use this method to explain what is happening and as soon as they have understood what move on to the abstract method as this can be a time consuming process.	$20 \begin{array}{rrrr} 0 & 3 & 1 & 8 \\ 6 & 3 & 6 & 5 \\ -6 & 0 & 1 & 1 \\ -3 & 6 & \\ -2 & 0 & 1 \\ -1 & 6 & 5 \\ -1 & 6 & 0 \\ \hline \end{array}$

Progression in Calculation Policy January 2022

	$\begin{array}{r} 1 2 \longdiv { 0 2 1 } \\ \frac{24}{2544} \\ \hline \frac{14}{2} \\ \frac{12}{2} \end{array}$ Regroup the 2 tens for 20 ones so now we have 24 ones. How may groups of 12 are in 24? 2 $\begin{array}{r} \begin{array}{r} 0212 \\ 12 \lcm{2544} \\ \frac{24}{14} \\ \frac{12}{24} \\ \hline 24 \\ \hline 0 \end{array} \end{array}$		Express remainders as fractions Express remainders as decimals $432 \div 15$ becomes 15 $\begin{array}{\|cccc} & 2 & 8 & 8 \\ \hline 4 & 3 & 2 & 0 \\ 3 & 0 & \downarrow & \\ \hline 1 & 3 & 2 & \\ 1 & 2 & 0 & \downarrow \\ & 1 & 2 & 0 \\ & 1 & 2 & 0 \\ \hline & & & 0 \end{array}$ Answer: 28-8

